Effects of Thermal Processing on the Stability of Fumonisin B₂ in an Aqueous System

Keywords: Fumonisin B₂; thermal processing; stability; decomposition

INTRODUCTION

Fusarium moniliforme, a prevalent fungal contaminant of corn, has been implicated in several animal diseases including equine leukoencephalomalacia (ELEM) (Thiel et al., 1991), porcine pulmonary edema (PPE) (Harrison et al., 1990), liver toxicity and liver cancer in rats (Voss et al., 1993), and esophageal cancer in humans (Sydenham et al., 1991; Rheeder et al., 1992). The fumonisins, which are secondary metabolites of *F. moniliforme*, are believed to be responsible for many of the toxicological effects in animals and humans (Marasas et al., 1988; Wilson et al., 1992; Colvin et al., 1993, Gelderblom et al., 1991; Sydenham et al., 1991).

Toxicological studies have shown that purified fumonisin B_1 (FB₁) causes ELEM (Marasas et al., 1988; Wilson et al., 1992), PPE (Colvin et al., 1993), and liver tumors (Gelderblom et al., 1991) in rats. FB₂ has been shown to cause ELEM in ponies (Ross et al., 1994) and cytotoxicity in mammalian cell lines (Gelderblom et al., 1993). FB₁ and FB₂ have been found to inhibit sphingolipid biosynthesis by blocking the conversion of sphinganine to ceramide (Wang et al., 1991; Norred et al., 1992).

Fumonisins are diesters of propane-1,2,3-tricarboxylic acid and a pentahydroxylcosane containing a primary amino group. To date, seven different fumonisin analogues have been identified and characterized (Bezuidenhout et al., 1988; Branham and Plattner, 1993; Cawood et al., 1991; Gelderblom et al., 1992; Plattner et al., 1992). Of the seven, FB₁ and FB₂ are the major toxins in contaminated corn. In corn contaminated with *Fusarium proliferatum*, the ratio of FB₁ to FB₂ is approximately 3 to 1 (Ross et al., 1992). Structurally, FB₂ differs from FB₁ in its lack of a hydroxyl group on the C-10 position of the 22-carbon backbone.

Several surveys have shown that thermally processed corn products (e.g., tortillas, ready-to-eat cereal, and muffins) generally contain lower concentrations of fumonisins than unprocessed products (e.g., cornmeal and grits) (Stack and Eppley, 1992; Pittet et al., 1992). Few studies, however, have focused on the effects of thermal processing on the fumonisin content of food. Alberts et al. (1990) reported that boiling culture material of F. moniliforme in water for 60 min resulted in no loss of FB₁. In contrast, baking (190 and 220 °C) muffins from contaminated cornmeal resulted in a partial apparent loss of FB₁ (Scott and Lawrence, 1994). Dupuy et al. (1993) and Jackson et al. (1996) reported that the loss of FB₁ in dry corn and in an aqueous model system, respectively, followed pseudo-first-order kinetics. Studies by Bordson et al. (1993) and Scott and Lawrence (1994) suggest that the observed losses of fumonisin in thermally processed food may be due to matrix-related difficulties of recovery and detection, rather than actual fumonisin decomposition. Murphy et al. (1996) reported that the primary amine group of fumonisins can be chemically blocked when foods are heated. This results in loss of the availability of the amine group to react with derivitizing agents that are used to analyze fumonisins.

To date, little information is available concerning the

effects of time, temperature, and pH on the stability of FB_2 . The objective of this study was to determine the thermal stability of FB_2 in an aqueous matrix-free environment at acidic, neutral, and basic pH levels.

MATERIALS AND METHODS

 FB_2 and *o*-phthaldialdehyde (OPA) were purchased from Sigma Chemical Co. (St. Louis, MO). Fully and partially hydrolyzed FB_2 qualitative standards were prepared by incubating pure FB_2 with 1 N KOH (Rice and Ross, 1994). All reagents were of analytical grade, and solvents were of highperformance liquid chromatography (HPLC) grade.

FB2 solutions (5 ppm) were prepared in Teorell and Stenhagen's citrate-phosphate-borate buffer (CRC, 1968) adjusted to pH 4, 7, or 10. This buffer was chosen since it has a broad pH range (2-12). The solutions (500 mL) were placed in a 1-L stainless steel pressure vessel (Parr Instrument Co., Moline, IL) and heated to processing temperatures of 100-200 °C with an electric heating mantle (Jackson et al., 1996). Use of the pressurized vessel enabled solution temperatures of >100 °C to be reached. A Parr Model 4841 proportional controller was used to maintain each reaction mixture at the desired temperature while it was agitated at a constant speed. The come-up times, i.e. the lengths of time necessary for FB₂ solutions to reach the desired processing temperatures, were 18, 29, 32, 40, and 44 min for temperatures of 100, 125, 150, 175, and 200 °C, respectively. Once the desired processing temperature was attained, aliquots of the reaction mixture were removed at 10-min intervals for 60 min and analyzed for FB₂ levels as previously described by Jackson et al. (1996).

HPLC Determination of FB_2. Losses of FB_2 in the processed solutions were measured according to the method of Shephard et al. (1990) with modifications (Jackson et al., 1996). Because FB₂ was processed in aqueous buffer, steps normally used to extract and purify fumonisin from corn were omitted. Consequently, the FB₂ solutions required minimal preparation for analysis by HPLC, and recovery correction was not necessary. A $10-\mu$ L aliquot of the FB₂/OPA mixture was used for HPLC determination. A Waters (Milford, MA) HPLC equipped with a Model 600 pump, a Rheodyne (Cotati, CA) injector, and a Model 740 fluorescence detector (335-nm excitation wavelength and 440-nm emission wavelength) and Millenium 2010 software (Waters) was used to identify and quantify FB2 in the solutions. Separations were carried out at 23 °C on a Supelco (Bellefonte, PA) ODS-80 column (4.6 mm \times 25 cm) with an LC-18-DB (Supelco) precolumn. The mobile phase was methanol/1 M sodium dihydrogen phosphate (80:20) adjusted to pH 3.3 with concentrated phosphoric acid at a flow rate of 1.0 mL/min.

Kinetic Calculations. Kinetic constants were calculated according to the procedure of Jackson et al. (1996).

Statistical Analysis. All processing runs were performed in duplicate. Processed solutions were analyzed for FB₂ in duplicate. Means and standard deviations were calculated with Minitab (State College, PA) statistical software. Linear regression analyses, used to determine reaction constants, halflives of FB₂, and correlation coefficients, were performed by using Psiplot graphics software (Poly Software International, Salt Lake City, UT). Minitab statistical software was used to verify significant differences between rate constants and halflives by one-way analysis of variance (ANOVA) followed by least significance difference (Isd) tests at 95% confidence. A three-way analysis of variance (ANOVA) was used to determine if processing variables (time, temperature, and pH) significantly affected loss of FB₂.

Safety Precaution. FB₂ is a suspected carcinogen and should be handled with care.

Figure 1. HPLC chromatograms using fluorescence detection (335-nm excitation wavelength and 440-nm emission wavelength) for FB₂ dissolved in an aqueous buffer at pH 10. Chromatograms A, B, C, and D refer to the FB₂ solution before processing, the solution after reaching 200 °C, the solution after 30 min at 200 °C, and the solution after 60 min at 200 °C, respectively. FB₂, partially hydrolyzed FB₂ (PHFB₂), and fully hydrolyzed FB₂ (HFB₂) are indicated by arrows. Peaks with retention times of less than 10 min have not been identified.

RESULTS AND DISCUSSION

Thermal Decomposition Products of FB₂. HPLC chromatograms for FB₂ processed at 200 °C (pH 10) are shown in Figure 1. The chromatograms indicate that the concentration of FB₂ (retention time of approximately 15.7 min) decreased during processing, while the levels of three apparent decomposition products (retention times of 14.1, 14.7, and 16.9 min) generally increased. Because the decomposition products had similar retention times as partially (14.1 and 14.7 min) and fully hydrolyzed (16.9 min) FB₂ standards, they were tentatively identified as PHFB₂ and HFB₂ in Figure 1.

Several researchers (Bezuidenhout et al., 1988; Jackson and Bennett, 1990; Sydenham et al., 1990a,b) have reported that fumonisins hydrolyze to the C_{22} aminopolyol backbone and tricarballylic acid in the presence of heat and strong acid or base. For example, fully hydrolyzed FB₁ can be found in tortillas prepared from corn treated with calcium hydroxide and heat (Hendrich et al., 1993). Hopmans and Murphy (1993) detected HFB₁ in tortilla chips, masa, and canned corn. However, little is known about the levels of hydrolyzed FB₂ in these and other thermally processed corn-based foods.

The data presented here (Figure 1) indicate that the thermal processing of FB_2 in the presence of water results primarily in the formation of hydrolysis products. The pH had an effect on the types of hydrolysis products detected in the processed solutions. At pH 10,

Table 1. Statistical Analysis of Variance of Time, Temperature, and pH on the Loss of FB_2 during Processing

	Total Processing Time (min)								
	Ű	20	40	60 80	100				
	o t		¥.						
	20		- K		4				
%	40			Т	т				
FB		Ŧ							
s R	60		117 -						
ema	80			<u> </u>	-				
tinii			¥ I			°c			
16	100		, 	▲	15				
	ŀ	T				0 ⁰ C			
	ŀ			-					
	г								
total		209	365243						
error		197	53432	271					
time		6	33505	5584	20.59	0.0001			
рп temn		2 4	266335	5985 66584	245 49	0.0001			
лU		(Model v	vith Main 1	Effect Only	/) 92.07	0 0001			
II. Dependent Variable: Percent FB ₂ Remaining									
total		209	365243						
error		105	6506	62					
pH ×	temp ×	time 48	9289	194	3.12	0.0001			
temp	\times time	24	29296	1220	19.70	0.0001			
pH ×	time	12	276	23	0.37	0.9710			
nH v	tomn	0 8	33303 8067	008 1008	90.12	0.0001			
temp		4	266335	66584	1074.58	0.0001			
pН		2	11971	5985	96.60	0.0001			
		(Mod	el with Int	eraction)					
	I De	nendent Var	iable [.] Per	rent FB ₂ R	emaining				
	source	DF	squares	squares	Fvalue	Pr > F			
	0		sum of	mean					

Figure 2. Effects of processing temperature and time on the decomposition of FB_2 in an aqueous buffer at pH 4. Each point represents the average of two replicates, and error bars indicate one standard deviation of the mean.

the major species throughout the process was HFB_2 , while at pH 4 and 7, PHFB₂ was also present.

Effect of pH, Time, and Temperature on the Stability of FB₂. Statistical analysis of the processing data was performed to determine if independent variables (time, temperature, and pH) were related to the dependent variable (percent FB₂ remaining after processing). Results of a three-way ANOVA indicate highly significant effects (p < 0.01) of pH, time, and temperature on loss of FB₂ (Table 1). In addition, Table 1 indicates that there was a highly significant three-way interaction (p < 0.01) between these independent variables.

Figures 2–4 and Table 1 indicate that decomposition of FB₂ during thermal processing depended on the pH of the solution. Overall, FB₂ was least stable at pH 4 (Figure 2) and most stable at pH 7 (Figure 3). At processing temperatures <200 °C, the decomposition of FB₂ was most rapid and extensive at pH 4, followed by pH 10 (Figure 4) and 7, respectively. At 200 °C, pH had little effect on the rate of loss of FB₂. After 60 min of processing at 200 °C, all FB₂ was decomposed at each pH level.

Figures 2-4 and Table 1 indicate that the rate of decomposition of FB₂ was highly temperature dependent

Total Processing Time (min)

Figure 4. Effects of processing temperature and time on the decomposition of FB₂ in an aqueous buffer at pH 10. Each point represents the average of two replicates, and error bars indicate one standard deviation of the mean.

and, in general, the extent of decomposition increased with processing temperature and time. At all three pH levels, no significant losses in FB2 occurred during processing at 100 and 125 °C. These results are parallel to those of Jackson et al. (1996), who reported no significant losses of FB1 at 100 °C and minor losses (<27%) at 125 °C. Similarly, Alberts et al. (1990) found that boiling culture material of F. moniliforme for 30 min did not reduce FB1 concentration. Dupuy et al. (1993) also found minimal losses of FB1 in naturally contaminated dry corn meal heated at 100 °C for 45 min.

After 60 min at 150 °C, loss of FB₂ ranged from 30 to 80%, with the greatest decomposition occurring at pH 4 and the least at pH 7. At temperatures of 175 and 200 °C, over 90% of FB₂ was degraded after 60 min of processing time, regardless of pH. The results shown here are in agreement with previous results that measured the thermal stability of FB_1 in an aqueous system (Jackson et al., 1996) and in corn. Dupuy et al. (1993) observed losses of FB₁ of 87% in dry corn heated to 150 °C for 40 min. FB_1 and FB_2 levels were reduced by 70-80% in moist corn meal heated for 60 min at 190 °C (Scott and Lawrence, 1994).

The decomposition of FB₂ in pH 4, 7, and 10 buffers heated at 150, 175, and 200 °C followed an apparent first-order reaction similar to that of FB1 (Jackson et al., 1996). In general, half-lives and pseudo-first-order

Table 2. Reaction Rate Constants (k) and Half-Lives $(t_{1/2})$ for the Decomposition of FB2 in Teorell and Stenhagen's Phosphate-Citrate-Borate Buffer at pH 4, 7, and 10 and Linear Relationships between Processing Time and Fraction of Remaining FB₂ As Indicated by Correlation Coefficients (R²)^a

temp, °C	pН	<i>k</i> , min ⁻¹	<i>t</i> _{1/2} , min	R^2
150	4	0.0296 ± 0.0046^{a}	$23.9\pm2.8^{\mathrm{a}}$	0.972
175	4	0.0564 ± 0.0058^{b}	$12.3\pm1.3^{ m b}$	0.923
200	4	$0.2846 \pm 0.0569^{\rm c}$	$2.4\pm0.5^{ m c}$	0.962
150	7	0.0077 ± 0.0005^{d}	$88.9 \pm 3.9^{ m d}$	0.983
175	7	$0.0625 \pm 0.0095^{\mathrm{b}}$	$11.1\pm2.6^{ m b}$	0.953
200	7	$0.0975 \pm 0.0212^{\rm e}$	$7.2\pm1.6^{ m e}$	0.986
150	10	$0.0096 \pm 0.0011^{\rm f}$	$70.3\pm8.1^{ m f}$	0.962
175	10	$0.0909 \pm 0.0354^{\rm e}$	$17.9\pm3.9^{ m e}$	0.943
200	10	0.1941 ± 0.0233^{g}	$3.6\pm0.4^{ m g}$	0.977

^a Kinetic constants were calculated according to the method of Jackson et al. (1996); those having the same superscripts (a-g)are not significantly different (p < 0.05).

reaction constants for the decomposition of FB₂ (Table 2) were in general agreement with those reported by Jackson et al. (1996) for FB₁.

The purpose of this study was to determine the thermal stability of FB₂ in an aqueous matrix-free environment under conditions that may be encountered when foods are processed. Processing temperatures of 100 and 125 °C were chosen since they are used when foods are boiled and retorted, respectively. The other temperatures studied here (150-200 °C) are within the range used to bake, extrude, and fry corn-based foods. The pH values used in the thermal processing study were used to mirror those found in corn-based foods. Batters used to make corn muffins/breads are typically at neutral pH. Buffer at pH 10 was used to simulate the high pH values (>10) seen during the process of nixtamilization or alkaline cooking and steeping of corn. Buffer at pH 4.0 was used to mirror the low pH values (3.5-4.0) encountered in the wet milling operation.

The results reported here indicate that, similar to FB₁, FB₂ is a fairly heat stable compound in an aqueous environment. Thermal processes such as boiling or retorting, which occur at temperatures <125 °C, would be expected to have little effect on fumonisin content. However, processing at temperatures >150 °C (frying, extrusion, baking) may result in the destruction of FB_2 and lead to a decrease in the overall fumonisin content.

ACKNOWLEDGMENT

We thank Stuart J. Chirtel (FDA, CFSAN, Division of Mathematics) for assisting with the statistical analysis of the data.

LITERATURE CITED

- Alberts, J. F.; Gelderblom, W. C. A.; Thiel, P. G.; Marasas, W. F. O.; van Schalwyk, D. J.; Behrend, Y. Effects of temperature and incubation period on production of fumonisin B₁ by Fusarium moniliforme. Appl. Environ. Microbiol. 1990, 56. 1729-1733.
- Bezuidenhout, S. C.; Gelderblom, W. C. A.; Spiteller, G.; Vleggaar, R. Structure elucidation of the fumonisins, mycotoxins from Fusarium moniliforme. J. Chem. Soc., Chem. Commun. 1988, 743-745.
- Branham, B. E.; Plattner, R. D. Isolation and characterization of a new fumonisin from liquid cultures of Fusarium moniliforme. J. Nat. Prod. 1993, 56, 1630-1633.
- Cawood, M. E.; Gelderblom, W. C. A.; Veggaar, R.; Behrend, Y.; Thiel, P. G.; Marasas, W. F. O. Isolation of the fumonisin mycotoxins: a quantitative approach. J. Agric. Food Chem. 1991, *39*, 1958-1962.

- Colvin, B. M.; Cooley, A. J.; Beaver, R. W. Fumonisin toxicosis in swine: clinical and pathologic findings. *J. Vet. Diagn. Invest.* **1993**, *5*, 232–241.
- CRC. *Handbook of Biochemistry*; Sober, H. A., Ed.; Chemical Rubber Co.: Cleveland, OH, 1968; pp J234–J237.
- Dupuy, J.; Le Bars, P.; Boudra, H.; Le Bars, J. Thermostability of fumonisin B₁, a mycotoxin from *Fusarium moniliforme*, in corn. *Appl. Environ. Microbiol.* **1993**, *59*, 2864–2867.
- Gelderblom, W. C. A.; Kriek, N. P. J.; Marasas, W. F. O.; Thiel, P. G. Toxicity and carcinogenicity of the *F. moniliforme* metabolite, FB₁, in rats. *Appl. Environ. Microbiol.* **1991**, *12*, 1247–1251.
- Gelderblom, W. C. A.; Marasas, W. F. O.; Vleggaar, R.; Thiel, P. G.; Cawood, M. E. Fumonisins: isolation, chemical characterization and biological effects. *Mycopathologia* **1992**, *117*, 11–16.
- Gelderblom, W. C. A.; Cawood, M. E.; Snyman, S. D.; Vleggaar, R.; Marasas, W. F. O. Structure-activity relationships of fumonisins in short-term carcinogenesis and cytotoxicity assays. *Food Chem. Toxicol.* **1993**, *31*, 407–414.
- Harrison, L. R.; Colvin, B. M.; Greene, T. J.; Newman, L. E.; Cole, R. J. Pulmonary edema and hydrothorax in swine produced by fumonisin B₁, a toxic metabolite of *Fusarium moniliforme. J. Vet. Diagn. Invest.* **1990**, *2*, 217–221.
- Hendrich, S.; Miller, K. A.; Wilson, T. M.; Murphy, P. A. Toxicity of *Fusarium proliferatum*-fermented nixtamilized corn-based diets fed to rats: effect of nutritional status. *J. Agric. Food Chem.* **1993**, *41*, 1649–1654.
- Hopmans, E. C.; Murphy, P. A. Detection of fumonisins B_1 , B_2 and B_3 and hydrolyzed fumonisin B_1 in corn-containing foods. *J. Agric. Food Chem.* **1993**, *41*, 1655–1658.
- Jackson, L. S.; Hlywka, J. J.; Senthil, K. R.; Bullerman, L. B.; Musser, S. M. Effects of time, temperature and pH on the stability of fumonisin B₁ in an aqueous model system. *J. Agric. Food Chem.* **1996**, *43*, 906–912.
- Jackson, M. A.; Bennett, G. A. Production of fumonisin B₁ by Fusarium moniliforme NRL 13616 in submerged culture. Appl. Environ. Microbiol. **1990**, 56, 2296–2298.
- Marasas, W. F. O.; Kellerman, T. S.; Gelderblom, W. C. A.; Coetzer, J. A. W.; Thiel, P. T.; van der Lugt, J. J. Leukoencephalomalacia in a horse induced by fumonisin B₁ isolated from *Fusarium moniliforme. Onderstepoort J. Vet. Res.* **1988**, *55*, 197–203.
- Murphy, P. A.; Hendrich, S.; Hopmans, E. C.; Hauck, C. C.; Lu, Z.; Buseman, G.; Munkvold, G. Effect of processing on fumonisin content of corn. In *Fumonisins in Food*; Jackson, L. S., DeVries, J. W., Bullerman, L. B., Eds.; Plenum Publishing: New York, 1996; pp 223–234.
- Norred, W. P.; Wang, E.; Yoo, H.; Riley, R. T.; Merrill, A. H., Jr. *In vitro* toxicology of fumonisins and the mechanistic implications. *Mycopathologia* **1992**, *117*, 73–78.
- Pittet, A.; Parisod, V.; Schellenberg, M. Occurrence of fumonisins B₁ and B₂ in corn-based products from the Swiss market. J. Agric. Food Chem. **1992**, 40, 1352–1354.
- Plattner, R. D.; Weisleder, D.; Shackelford, D. D.; Peterson, R.; Powell, R. G. A new fumonisin from solid cultures of *Fusarium moniliforme. Mycopathologia* 1992, 117, 23-28.
- Rheeder, J. P.; Marasas, W. F. Ö.; Thiel, P. G.; Sydenham, E. W.; Shephard, G. S.; Van Schalkwyk, D. J. *Fusarium moniliforme* and fumonisins in corn in relation to human esophageal cancer in Transkei. *Phytopathology* **1992**, *82*, 353–357.
- Rice, L. G.; Ross, P. F. Methods for detection and quantitation of fumonisins in corn, cereal products and animal excreta. *J. Food Prot.* **1994**, *57*, 536–540.
- Ross, P. F.; Rice, L. G.; Osweiler, G. D.; Nelson, P. E.; Richard, J. L.; Wilson, T. M. A review and update of animal toxicoses associated with fumonisin-contaminated feds and production of fumonisins by *Fusarium* isolates. *Mycopathologia* **1992**, *114*, 129–135.

- Scott, P. M.; Lawrence, G. A. Stability and problems in recovery of fumonisins added to corn-based foods. *J. AOAC Int.* **1994**, *77*, 541–545.
- Shephard, G. S.; Sydenham, E. W.; Thiel, P. G.; Gelderblom, W. C. A. Quantitative determination of fumonisin B₁ and B₂ by high performance liquid chromatography with fluorescence detection. *J. Liq. Chromatogr.* **1990**, *13*, 2077– 2087.
- Stack, M. E.; Eppley, R. M. Liquid chromatographic determination of fumonisins B_1 and B_2 in corn and corn products. *J. AOAC Int.* **1992**, *75*, 834–837.
- Sydenham, E. W.; Thiel, P. G.; Marasas, W. F. O.; Shephard, G. S.; Van Schalkwyk, D. J.; Koch, K. R. Natural occurrence of some *Fusarium* mycotoxins in corn from low and high esophageal cancer prevalence areas of the Transkei, South Africa. *J. Agric. Food Chem.* **1990a**, *38*, 1900–1903.
- Sydenham, E. W.; Gelderblom, W. C. A.; Thiel, P. G.; Marasas, W. F. O. Evidence for the natural occurrence of fumonisin B₁, a mycotoxin produced by *Fusarium moniliforme*, in corn. *J. Agric. Food Chem.* **1990b**, *38*, 285–290.
- Sydenham, E. W.; Shephard, G. S.; Thiel, P. G.; Marasas, W. F. O.; Stockenstrom, S. Fumonisin contamination of commercial corn-based human foodstuffs. *J. Agric. Food Chem.* **1991**, *25*, 767–771.
- Thiel, P. G.; Shephard, G. S.; Sydenham, E. W.; Marasas, W. F. O.; Nelson, P. E.; Wilson, T. M. Levels of fumonisins B_1 and B_2 in feeds associated with confirmed cases of equine leukoencephalomalacia. *J. Agric. Food Chem.* **1991**, *39*, 109–111.
- Voss, K. A.; Chamberlain, W. J.; Bacon, C. W.; Norred, W. P. A preliminary investigation on renal and heptic toxicity in rats fed purified fumonisin B₁. *Nat. Toxins* **1993**, *1*, 222– 228.
- Wang, E.; Norred, W. P.; Bacon, C. W.; Riley, R. T.; Merrill, A. H., Jr. Inhibition of sphingosine biosynthesis by fumonisins. Implications for diseases associated with *Fusarium moniliforme. J. Biol. Chem.* **1991**, *266*, 14486–14490.
- Wilson, T. M.; Ross, P. R.; Owens, D. L.; Rice, L. G.; Green, S. A.; Jenkins, S. J.; Nelson, H. A. Experimental reproduction of ELEM. *Mycopathologia* **1992**, *117*, 115–120.

Received for review March 27, 1996. Accepted June 10, 1996. This publication was supported by the USDA and by Cooperative Agreement FD-000431 from the U.S. Food and Drug Administration (and the National Center for Food Safety and Technology). Its contents are solely the opinions of the authors and do not necessarily represent official views of the U.S. Food and Drug Administration. Published as Paper 11453, Journal Series, Agricultural Research Division, Lincoln, NE. Research was conducted under Project 16056.

Lauren S. Jackson,^{*,†} Jason J. Hlywka,[‡] Kannaki R. Senthil,[§] and Lloyd B. Bullerman[‡]

Food and Drug Administration, National Center for Food Safety and Technology, Summit-Argo, Illinois 60501, Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska 68583, and Illinois Institute of Technology, National Center for Food Safety and Technology, Summit-Argo, Illinois 60501

JF9601729

* Author to whom correspondence should be addressed.

[§] Illinois Institute of Technology.

[†] Food and Drug Administration.

[‡] University of Nebraska.